Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-37047932

RESUMEN

Traffic is a major source of particulate pollution in large cities, and particulate matter (PM) level in Bangkok often exceeds the World Health Organisation limits. While PM2.5 and PM10 are both measured in Bangkok regularly, the sub-micron range of PM, of specific interest in regard to possible adverse health effects, is very limited. In the study, particle number concentration (PNC) was measured on public transport in Bangkok. A travel route through Bangkok using the state railway, the mass rapid transport underground system, the Bangkok Mass Transit System (BTS) Skytrain and public buses on the road network, with walking routes between, was taken whilst measuring particle levels with a hand-held concentration particle counter. The route was repeated 19 times covering different seasons during either morning or evening rush hours. The highest particle concentrations were found on the state railway, followed by the bus, the BTS Skytrain and the MRT underground with measured peaks of 350,000, 330,000, 33,000 and 9000 cm-3, respectively, though particle numbers over 100,000 cm-3 may be an underestimation due to undercounting in the instrument. Inside each form of public transport, particle numbers would peak when stopping to collect passengers (doors opening) and decay with a half-life between 2 and 3 min. There was a weak correlation between particle concentration on bus, train and BTS and Skytrain with carbon monoxide concentration, as measured at a fixed location in the city.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Tailandia , Material Particulado/análisis , Transportes , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Contaminación del Aire/análisis , Tamaño de la Partícula , Emisiones de Vehículos/análisis
2.
Int J Hyg Environ Health ; 250: 114124, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36989998

RESUMEN

The mechanisms underlying the association between prenatal arsenic exposure and the development of metabolic diseases remain unclear. Aberrant adipogenesis and adipokine production are associated with increased risk for the development of metabolic diseases in susceptible populations. Generation of mature adipocytes is tightly regulated by the expression of genes encoding: peroxisome proliferator-activated receptor γ (PPARG), fatty acid-binding protein (FABP4), and glucose transporter-4 (SLC2A4), and adipokines such as leptin (LEP) and adiponectin (ADIPOQ). This study aimed to investigate the expression of these genes, which are associated with the pathogenesis of metabolic diseases in newborns and children exposed to arsenic in utero. A high arsenic exposed group showed significantly decreased PPARG and FABP4 expression in cord blood samples from newborns and in saliva samples from children. By contrast, the expression of the SLC2A4 and ADIPOQ mRNA was significantly decreased in high-arsenic exposed children. Furthermore, the levels of toenail arsenic were negatively correlated with the salivary mRNA expression levels of PPARG (r = -0.412, p < 0.01), aP2 (r = -0.329, p < 0.05), and SLC2A4 (r = -0.528, p < 0.01). In vitro studies utilizing umbilical cord derived mesenchymal stem cells (UC-MSCs) as a surrogate for fetal MSCs showed that arsenite treatment (0.5 µM and 1 µM) significantly impaired adipogenic differentiation in a concentration dependent manner. Such impairment may be related to a significant decrease in the expression of: PPARγ, FABP4, and SLC2A4 observed at 1 µM arsenite. Arsenite treatment also promoted inflammation through a significant increase in the mRNA expression levels of the pro-inflammatory adipokine, LEP, and the inflammatory cytokines: CXCL6, IL-1ß, and CXCL8. Collectively, our results suggests that such alterations may be a consequence of the effects of arsenic exposure on fetal MSCs eventually leading to impaired adipogenic differentiation and the promotion of inflammation, both of which contribute to the development of metabolic diseases later in life.


Asunto(s)
Arsénico , Arsenitos , Enfermedades Metabólicas , Embarazo , Femenino , Niño , Recién Nacido , Humanos , Arsénico/metabolismo , Arsenitos/metabolismo , Arsenitos/farmacología , PPAR gamma/genética , PPAR gamma/metabolismo , PPAR gamma/farmacología , Diferenciación Celular/genética , Adipocitos/metabolismo , Adipoquinas/genética , Adipoquinas/metabolismo , Adipoquinas/farmacología , Enfermedades Metabólicas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/farmacología , Inflamación
3.
Toxicol Rep ; 9: 1728-1741, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518486

RESUMEN

Prenatal exposure to arsenic is associated with an increased risk of disease development such as liver cancer in adulthood. Increasing evidence suggests that fetal stem cells are key targets during transplacental chemical exposure. Our earlier study reported that in utero arsenic exposure caused various types of DNA damage in newborns. In this study, we further investigated the effects of prenatal arsenic exposure on mutagenic DNA damage in umbilical cord mesenchymal stem cells (MSCs) that represent fetal stem cells from the same birth cohort. DNA damage measured as 8-hydroxydeoxyguanine (8-OHdG) and 8-nitroguanine was increased in umbilical cord MSCs of newborns in relation to maternal arsenic levels in a dose-dependent manner. Levels of 8-OHdG and 8-nitroguanine were significantly (p < 0.05) and positively associated with arsenic levels in cord blood and maternal toenails. In vitro studies confirmed that arsenite treatment alone (0-5 µM, 24 h) significantly increased the levels of 8-OHdG and 8-nitroguanine in an MSC cell line derived from umbilical cord tissue (UC-MSCs). When UC-MSCs were allowed to differentiate into hepatocytes in the presence of arsenite (0.5 µM, 21 days), there were significant increases (p < 0.05) in 8-OHdG and 8-nitroguanine compared to those observed in undifferentiated UC-MSCs. Moreover, in these arsenite-exposed differentiated hepatocytes, expression of inflammatory genes (CXCL6 and CXCL8) and an oxidative stress response gene (NFE2L2) was increased, while that of a DNA repair gene (OGG1) was decreased. Arsenite treatment also increased cell transformation ability of hepatocytes differentiated from UC-MSCs. These results suggest that arsenic exposure increases mutagenic DNA damage in fetal stem cells which continued when these cells differentiated to become hepatocytes which have increased cell transformation ability. This study highlights the potential risk of in utero arsenic exposure, which may lead to liver disease and cancer development later in life.

4.
Sci Rep ; 12(1): 22429, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575207

RESUMEN

Intrahepatic cholangiocarcinoma (iCCA) arises along the peripheral bile ducts and is often accompanied by a tumor microenvironment (TME) high in extracellular matrices (ECMs). In this study, we aimed to evaluate whether an ECM-rich TME favors iCCA progression. We identified ITGA2, which encodes collagen-binding integrin α2, to be differentially-expressed in iCCA tumors compared with adjacent normal tissues. Elevated ITGA2 is also positively-correlated with its ligand, collagen type I. Increased ITGA2 expression and its role in collagen type I binding was validated in vitro using four iCCA cell lines, compared with a non-cancerous, cholangiocyte cell line. Robust interaction of iCCA cells with collagen type I was abolished by either ITGA2 depletion or integrin α2ß1-selective inhibitor treatment. In a phenotypic study, collagen type I significantly enhances clonogenic growth of HuCCA-1 and HuCCT-1 cells by three and sixfold, respectively. Inhibition of integrin α2 expression or its activity significantly blocks collagen type I-induced colony growth in both cell lines. Taken together, our data provide mechanistic evidence that collagen type I promotes growth of iCCA colonies through integrin α2 suggesting that the collagen type I-integrin α2 axis could be a promising target for cancer prevention and a therapeutic opportunity for this cancer.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Integrina alfa2/genética , Colágeno Tipo I/genética , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Microambiente Tumoral
5.
Environ Sci Pollut Res Int ; 29(52): 79025-79040, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35705762

RESUMEN

Inhalable particulate matter (PM) is a health concern, and people living in large cities such as Bangkok are exposed to high concentrations. This exposure has been linked to respiratory and cardiac diseases and cancers of the lung and brain. Throughout 2018, PM was measured in northern Bangkok near a toll road (13.87°N, 100.58°E) covering all three seasons (cool, hot and rainy). PM10 was measured in 24- and 72-h samples. On selected dates aerodynamic size and mass distribution were measured as 3-day samples from a fixed 5th floor inlet. Particle number concentration was measured from the 5th floor inlet and in roadside survey measurements. There was a large fraction of particle number concentration in the sub-micron range, which showed the greatest variability compared with larger fractions. Metals associated with combustion sources were most found on the smaller size fraction of particles, which may have implications for associated adverse health outcomes because of the likely location of aerosol deposition in the distal airways of the lung. PM10 samples varied between 30 and 100 µg m-3, with highest concentrations in the cool season. The largest metal fractions present in the PM10 measurements were calcium, iron and magnesium during the hot season with average airborne concentrations of 13.2, 3.6 and 2.0 µg m-3, respectively. Copper, zinc, arsenic, selenium, molybdenum, cadmium, antimony and lead had large non-crustal sources. Principal component analysis (PCA) identified likely sources of the metals as crustal minerals, tailpipe exhaust and non-combustion traffic. A health risk analysis showed a higher risk of both carcinogenic and non-carcinogenic health effects in the drier seasons than the wet season due to ingestion of nickel, arsenic, cadmium and lead.


Asunto(s)
Contaminantes Atmosféricos , Arsénico , Selenio , Humanos , Contaminantes Atmosféricos/análisis , Cadmio/análisis , Níquel/análisis , Arsénico/análisis , Antimonio/análisis , Cobre/análisis , Magnesio/análisis , Selenio/análisis , Molibdeno/análisis , Calcio/análisis , Tailandia , Monitoreo del Ambiente , Material Particulado/análisis , Aerosoles/análisis , Zinc/análisis , Hierro/análisis , Tamaño de la Partícula
6.
Chem Biol Interact ; 361: 109965, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35490796

RESUMEN

Growing evidence suggests that arsenic exposure increases the risk of developing a variety of inflammation-associated chronic diseases and cancers. Our previous study revealed that increased transcript levels of inflammatory genes (i.e. COX2, EGR1, and SOCS3) coupled with hypomethylation of the promoter regions of these genes was associated with increased DNA damage in arsenic-exposed newborns through their early childhood. This study further investigated the ability of the methyl group donors, S-adenosyl methionine (SAM) and folic acid, to prevent promoter hypomethylation that results in decreased mRNA expression of inflammatory genes (COX2, EGR1, and SOCS3), and a reduction in arsenic-induced oxidative and nitrative DNA damage in human lymphoblast cells. Pretreatment with SAM (100 nM, 2 days) increased promoter methylation, reduced the mRNA levels of these inflammatory genes, and decreased both 8-hydroxydeoxyguanosine (8-OHdG) and 8-nitroguanine levels by 50% (p < 0.01) in arsenic-treated cells. In addition, pretreatment with folic acid (10 µM, 7 days), a micronutrient, led to a significant increase in promoter methylation associated with the reduction in mRNA levels of these inflammatory genes and decreased levels of 8-OHdG and 8-nitroguanine by 80% and 90% (p < 0.01), respectively, compared with arsenic treatment alone. Moreover, pretreatments with these methyl group donors increased mRNA expression of an antioxidant defense regulator (Nrf2) and DNA repair genes (hOGG1, XRCC1, and PARP1). This study shows for the first time that SAM or folic acid supplementation can prevent arsenic-induced oxidative and nitrative DNA damage. This suggests the potential use of SAM or folic acid for prevention of arsenic toxicity in human populations.


Asunto(s)
Arsénico , 8-Hidroxi-2'-Desoxicoguanosina , Arsénico/toxicidad , Preescolar , Ciclooxigenasa 2 , Daño del ADN , Metilación de ADN , Reparación del ADN , Ácido Fólico/farmacología , Humanos , Recién Nacido , Estrés Oxidativo , ARN Mensajero/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
7.
Toxicol Rep ; 8: 1607-1615, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522624

RESUMEN

Pyridoxine is a co-factor in many enzymatic reactions and impacts of deficiency have been observed in affected populations. A possible modifying effect of pyridoxine deficiency on benzene toxicity was assessed in male B6C3F1 mice fed either a pyridoxine-deficient diet or a control diet. This treatment was combined with benzene inhalation exposure (100 ppm) or no benzene treatment. Pyridoxine-deficient mice exposed to 100 ppm benzene had significantly lower body, thymus and spleen weights. While total white blood cell counts, percentage of lymphocytes, hematocrit and hemoglobin levels were lower, the percentage of neutrophils was significantly higher in deficient and benzene-exposed mice compared to non-exposed controls. Hepatic CYP2E1 protein expression and activity in the deficient and exposed mice were also significantly higher compared to the non-exposed controls. A significant correlation between CYP2E1 activity and several hematological parameters was observed. These results demonstrated that pyridoxine deficiency significantly impacted benzene-induced hematotoxicity. Moreover, the observed agonistic effect of pyridoxinedeficiency and benzene inhalation exposure on CYP2E1 would seem to indicate an involvement of metabolism, but this needs to be further assessed.

8.
Chem Biol Interact ; 346: 109580, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34280354

RESUMEN

Dichloromethane (DCM), a widely used chlorinated solvent, is classified by IARC (2017) as probably carcinogenic to humans. Exposure to DCM has been associated with increased incidence of cholangiocarcinoma (CCA) in humans. This study aimed to investigate how DCM could contribute to CCA development by investigating the effects of DCM on DNA damage and cell transformation in cholangiocytes (MMNK-1) and on metastatic potential as measured by invasion and cell migration in malignant CCA cell lines (HuCCA-1 and RMCCA-1). MMNK-1 cells treated with the non-cytotoxic concentration of DCM (25 µM, 24 h) significantly increased the levels of mutagenic DNA adducts including 8-hydroxydeoxyguanosine, 8-OHdG, (1.84-fold, p < 0.01) and 8-nitroguanine (1.96-fold, p < 0.01) and enhanced cell transformation by 1.47-fold (p < 0.01). In addition, the expression of various genes involved in carcinogenesis, namely, NFE2L2 (antioxidative response), CXCL8 (inflammation), CDH1 (cell adhesion), MMP9 (tissue remodeling) and MKI67 (cell proliferation) were altered in cholangiocytes treated with DCM. When MMNK-1 cells were transformed by DCM, the expression of all the aforementioned genes was also increased. In malignant cell lines (HuCCA-1 and RMCCA-1), DCM treatment resulted in increased CXCL8 and MMP9 transcription and decreased CDH1 transcription accompanied by increased invasion and migration capabilities of these cells. Taken together, this study demonstrated that DCM exposure could be linked to the development of CCA.


Asunto(s)
Transformación Celular Neoplásica/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Cloruro de Metileno/toxicidad , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Aductos de ADN/análisis , Aductos de ADN/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Cloruro de Metileno/química , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , ARN Mensajero/metabolismo
9.
Environ Pollut ; 270: 116053, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33213951

RESUMEN

Inorganic arsenic (iAs) is a naturally occurring metalloid present in drinking water and polluted air exposing millions of people globally. Epidemiological studies have linked iAs exposure to the development of numerous diseases including cognitive impairment, cardiovascular failure and cancer. Despite intense research, an effective therapy for chronic arsenicosis has yet to be developed. Laboratory studies have been of great benefit in establishing the pathways involved in iAs toxicity and providing insights into its mechanism of action. However, the in vivo analysis of arsenic toxicity mechanisms has been difficult by the lack of reliable in vivo biomarkers of iAs's effects. To address this issue we have applied the use of our recently developed stress reporter models to study iAs toxicity. The reporter mice Hmox1 (oxidative stress/inflammation; HOTT) and p21 (DNA damage) were exposed to iAs at acute and chronic, environmentally relevant, doses. We observed induction of the oxidative stress reporters in several cell types and tissues, which was largely dependent on the activation of transcription factor NRF2. We propose that our HOTT reporter model can be used as a surrogate biomarker of iAs-induced oxidative stress, and it constitutes a first-in-class platform to develop treatments aimed to counteract the role of oxidative stress in arsenicosis. Indeed, in a proof of concept experiment, the HOTT reporter mice were able to predict the therapeutic utility of the antioxidant N-acetyl cysteine in the prevention of iAs associated toxicity.


Asunto(s)
Intoxicación por Arsénico , Arsénico , Animales , Antioxidantes , Arsénico/toxicidad , Biomarcadores , Hemo-Oxigenasa 1/genética , Proteínas de la Membrana , Ratones , Estrés Oxidativo
10.
Faraday Discuss ; 226: 515-536, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33237098

RESUMEN

The contribution of NOx emissions and background O3 to the sources and partitioning of the oxidants [OX (= O3 + NO2)] at the Marylebone Road site in London during the 2000s and 2010s has been investigated to see the impact of the control measures or technology changes inline with the London Mayor's Air Quality Strategy. The abatement of the pollution emissions has an impact on the trends of local and background oxidants, [OX]L and [OX]B, decreasing by 1.4% per year and 0.4% per year, respectively from 2000 to 2019. We also extend our study to three roadside sites (Din Daeng, Thonburi and Chokchai) in another megacity, Bangkok, to compare [OX]L and [OX]B and their behavioural changes with respect to the Marylebone Road site. [OX]L and [OX]B at the Marylebone Road site (0.21[NOx] and 32 ppbv) are comparable with the roadside sites of Thailand (0.12[NOx] to 0.26[NOx] and 29 to 32 ppbv). The seasonal variation of [OX]B levels displays a spring maximum for London, which is due to the higher northern hemispheric ozone baseline, but a maximum during the dry season is found for Bangkok which is likely due to regional-scale long-range transport from the Asian continent. The diurnal variations of [OX]L for both London and Bangkok roadside sites confirm the dominance of the oxidants from road transport emissions, which are found to be higher throughout the daytime. WRF-Chem-CRI model simulations of the distribution of [OX] showed that the model performed well for London background sites when predicting [OX] levels compared with the measured [OX] levels suggesting that the model is treating the chemistry of the oxidants correctly. However, there are large discrepancies for the model-measurement [OX] levels at the traffic site because of the difficulties in the modelling of [OX] at large road networks in megacities for the complex sub grid-scale dynamics that are taking place, both in terms of atmospheric processes and time-varying sources, such as traffic volumes. For roadside sites in Bangkok, the trend in changes of [OX] is predicted by the model correctly but overestimated in absolute magnitude. We suggest that this large deviation is likely to be due to discrepancies in the EDGAR emission inventory (emission overestimates) beyond the resolution of the model.

11.
Chem Res Toxicol ; 33(2): 625-633, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31841318

RESUMEN

DNA methylating agents are abundant in the environment and are sometimes used in cancer chemotherapy. They react with DNA to form methyl-DNA adducts and byproduct lesions that can be both toxic and mutagenic. Foremost among the mutagenic lesions is O6-methylguanine (m6G), which base pairs with thymine during replication to cause GC → AT mutations. The gpt delta C57BL/6J mouse strain of Nohmi et al. (Mol. Mutagen 1996, 28, 465-70) reliably produces mutational spectra of many DNA damaging agents. In this work, mouse embryo fibroblasts (MEFs) were made from gpt delta C57BL/6J mice and evaluated as a screening tool to determine the qualitative and quantitative features of mutagenesis by N-methyl-N-nitrosourea (MNU), a direct-acting DNA alkylator that serves as a model for environmental N-nitrosamines, such as N-nitrosodimethylamine and therapeutic agents such as Temozolomide. The DNA repair protein MGMT (O6-methylguanine DNA methyltransferase) protects against environmental mutagenesis by DNA methylating agents and, by removing m6G, limits the therapeutic potential of Temozolomide in cancer therapy. The gpt delta MEFs were treated with MNU to establish dose-dependent toxicity. In parallel, MNU mutagenicity was determined in the presence and absence of the MGMT inhibitor AA-CW236 (4-(2-(5-(chloromethyl)-4-(4-(trifluoromethoxy)phenyl)-1H-1,2,3-triazol-1-yl)ethyl)-3,5-dimethylisoxazole). With and without the inhibitor, the principal mutagenic event of MNU was GC → AT, but more mutations were observed when the inhibitor was present. Evidence that the mutagenic lesion was m6G was based on mass spectral data collected using O6-methyl-d3-guanine as an internal standard; m6G levels were higher in AA-CW236 treated MEFs by an amount proportional to the higher mutation frequency seen in the same cells. This work establishes gpt delta MEFs as a versatile tool for probing mutagenesis by environmental and therapeutic agents and as a cell culture model in which chemical genetics can be used to determine the impact of DNA repair on biological responses to DNA damaging agents.


Asunto(s)
Alquilantes/farmacología , Metilasas de Modificación del ADN/antagonistas & inhibidores , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Metilnitrosourea/farmacología , Mutagénesis/efectos de los fármacos , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Alquilantes/química , Animales , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Inhibidores Enzimáticos/química , Fibroblastos/metabolismo , Metilnitrosourea/química , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Supresoras de Tumor/metabolismo
13.
Environ Health ; 18(1): 51, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31174534

RESUMEN

BACKGROUND: Growing evidence indicates that in utero arsenic exposures in humans may increase the risk of adverse health effects and development of diseases later in life. This study aimed to evaluate potential health risks of in utero arsenic exposure on genetic damage in newborns in relation to maternal arsenic exposure. METHODS: A total of 205 pregnant women residing in arsenic-contaminated areas in Hanam province, Vietnam, were recruited. Prenatal arsenic exposure was determined by arsenic concentration in mother's toenails and urine during pregnancy and in umbilical cord blood collected at delivery. Genetic damage in newborns was assessed by various biomarkers of early genetic effects including oxidative/nitrative DNA damage (8-hydroxydeoxyguanosine, 8-OHdG, and 8-nitroguanine), DNA strand breaks and micronuclei (MN) in cord blood. RESULTS: Maternal arsenic exposure, measured by arsenic levels in toenails and urine, was significantly increased (p <  0.05) in subjects residing in areas with high levels of arsenic contamination in drinking water. Cord blood arsenic level was significantly increased in accordance with maternal arsenic exposure (p <  0.001). Arsenic exposure in utero is associated with genotoxic effects in newborns indicated as increased levels of 8-OHdG, 8-nitroguanine, DNA strand breaks and MN frequency in cord blood with increasing levels of maternal arsenic exposure. Maternal toenail arsenic level was significantly associated with all biomarkers of early genetic effects, while cord blood arsenic levels associated with DNA strand breaks and MN frequency. CONCLUSIONS: In utero arsenic exposure is associated with various types of genetic damage in newborns potentially contributing to the development of diseases, including cancer, later in life.


Asunto(s)
Arsénico/toxicidad , Daño del ADN/efectos de los fármacos , Sangre Fetal/química , Exposición Materna/efectos adversos , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Adulto , Biomarcadores/sangre , Femenino , Humanos , Recién Nacido , Uñas/química , Embarazo , Vietnam , Adulto Joven
14.
Ann Glob Health ; 85(1)2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30873796

RESUMEN

Children are particularly vulnerable to environmental hazards because they receive higher doses of pollutants in any given environment and often do not have equitable access to social protection mechanisms such as environmental and health care services. The World Health Organization established a global network of collaborating centres that address children's environmental health (CEH). The network developed a focus on low- and middle-income countries (LMICs) and is broadening its reach by conducting regional workshops for CEH.Objective: This paper reports on the outcomes of a workshop held in conjunction with the 17th International Conference (November 2017) of the Pacific Basin Consortium for Environment and Health, focused on the state of CEH in South and Southeast Asia as presented by seven countries from the region (India, Bangladesh, Nepal, Bhutan, Vietnam, Thailand, Sri Lanka).Workshop outcomes: Country reports presented at the meeting show a high degree of similarity with respect to the issues threatening the health of children. The most common problems are outdoor and household air pollution in addition to exposure to heavy metals, industrial chemicals, and pesticides. Many children still do not have adequate access to clean water and improved sanitation while infectious diseases remain a problem, especially for children living in poverty. Child labour is widely prevalent, generally without adequate training or personal protective equipment. The children now face the dual burden of undernutrition and stunting on the one hand and overnutrition and obesity on the other.Conclusion: It is evident that some countries in these regions are doing better than others in varying areas of CEH. By establishing and participating in regional networks, countries can learn from each other and harmonise their efforts to protect CEH so that all can benefit from closer interactions.


Asunto(s)
Salud Infantil , Mortalidad del Niño , Salud Ambiental , Adolescente , Contaminación del Aire/estadística & datos numéricos , Asia Sudoriental/epidemiología , Bangladesh/epidemiología , Bután/epidemiología , Niño , Trabajo Infantil/estadística & datos numéricos , Trastornos de la Nutrición del Niño/epidemiología , Preescolar , Agua Potable , Exposición a Riesgos Ambientales/estadística & datos numéricos , Trastornos del Crecimiento/epidemiología , Humanos , India/epidemiología , Lactante , Recién Nacido , Nepal/epidemiología , Obesidad Infantil/epidemiología , Plaguicidas , Años de Vida Ajustados por Calidad de Vida , Saneamiento/estadística & datos numéricos , Sri Lanka/epidemiología , Tailandia/epidemiología , Vietnam/epidemiología
15.
Waste Dispos Sustain Energy ; 1(1): 79-89, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33134850

RESUMEN

Polybrominated Diphenylethers (PBDEs) were used as flame-retardants in various building materials, plastic and other polymers, airplanes, electronics etc. All or some of their congeners have been already banned in many countries, due to their persistency and adverse health effects. In this study, we are focusing on the e-wastes as a source of emission of PBDEs in ambient air during reclamation processes. The ambient air particulate matter (PM) samples were collected at and near e-waste reclamation site in Bangkok, Thailand. Results showed the presence of various homologues viz: tri, tetra, penta, hexa, and hepta-PBDEs on both PM2.5 and Total Suspended Particle (TSP) samples. The comparison of samples as a function of distance from reclamation site indicated elevated levels of PBDEs in the close proximity to e-waste site. Interestingly, a shift in the congener pattern was observed with lower brominated PBDEs being more prevalent on nearby off-site samples as compared to the PM collected at the e-waste site. The total penta-PBDEs concentration is about double on e-waste site PM2.5 compared to control site samples. For TSP, tetra, penta, and hepta-PBDEs congeners are at higher concentrations at e-waste sites and its vicinity compared to reference sites. Overall, a clear trend can be observed indicating a debromination of PBDEs to more toxic tri and tetra congeners during reclamation process and PBDEs are being translocated from treated materials to ambient air PM. BDE 30 congener is identified as a specific marker of thermal reclamation processes of e-wastes as a most stable degradation product. This work indicates potential hazards related to the reclamation of e-wastes and remediation of sites containing PBDEs. In particular, thermal treatment methods can lead to congener transformation and increased emissions of more toxic lower-brominated congeners.

16.
Oncol Lett ; 16(2): 1529-1538, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30008833

RESUMEN

Cholangiocarcinoma (CCA) is a severe cancer with poor prognosis. The aim of the present study was to explore the expression of argininosuccinate synthetase (ASS), as well as the possibility of using pegylated arginine deiminase (ADI-PEG20) for the treatment of CCA. ASS expression was determined in CCA specimens from 40 patients in Thailand. Immunohistochemical detection of ASS and determination of the proliferative index, Ki-67, were carried out in paraffin-embedded sections of these specimens, as well as in two CCA cell lines, HuCCA and RmCCA-1, derived from CCA samples from patients in Thailand. In total, ~45% of the CCA specimens had low ASS expression, and the level of expression was significantly negatively associated with cell differentiation (P<0.05) and Ki-67 expression (P<0.05). The level of ASS expression in tumor cells was significantly lower than that in non-tumor cells (1.3-fold, P<0.05). The HuCCA cell line had significantly lower levels (P<0.05) of ASS expression at the mRNA and protein levels relative to those of normal human immortalized fibroblast cells (BJ-1). By contrast, the RmCCA-1 cell line showed no significant difference. In addition, the effects of ADI-PEG20 on growth inhibition, apoptosis and cell cycle arrest were determined in HuCCA and RmCCA-1 cells. ADI-PEG20 treatment reduced cell viability and cell proliferation in the two CCA cell lines, though it had no effect in immortalized BJ-1 cells. Furthermore, ADI-PEG20 treatment significantly increased G0/G1 cell cycle arrest in HuCCA, though not in RmCCA-1 cells. ASS silencing in the RmCCA-1 cell line significantly enhanced its sensitivity to ADI-PEG20 treatment. Results from the in vitro study demonstrated that ADI-PEG20 has antitumor activity against CCA with low ASS expression.

17.
Rev Environ Health ; 33(2): 219-228, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29750656

RESUMEN

As one of the largest waste streams, electronic waste (e-waste) production continues to grow in response to global demand for consumer electronics. This waste is often shipped to developing countries where it is disassembled and recycled. In many cases, e-waste recycling activities are conducted in informal settings with very few controls or protections in place for workers. These activities involve exposure to hazardous substances such as cadmium, lead, and brominated flame retardants and are frequently performed by women and children. Although recycling practices and exposures vary by scale and geographic region, we present case studies of e-waste recycling scenarios and intervention approaches to reduce or prevent exposures to the hazardous substances in e-waste that may be broadly applicable to diverse situations. Drawing on parallels identified in these cases, we discuss the future prevention and intervention strategies that recognize the difficult economic realities of informal e-waste recycling.


Asunto(s)
Países en Desarrollo , Residuos Electrónicos/análisis , Exposición a Riesgos Ambientales/prevención & control , Reciclaje/estadística & datos numéricos , Administración de Residuos/estadística & datos numéricos , Asia , Países en Desarrollo/estadística & datos numéricos , Ghana , Humanos , Uruguay
18.
Free Radic Biol Med ; 116: 64-72, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29289706

RESUMEN

Paraquat (1,1'-dimethyl, 4,4'-bipyridinium dichloride; PQ), a widely used herbicide, is toxic to mammals through ingestion, inhalation and skin contact. Epidemiological data suggest that PQ is also mutagenic and carcinogenic, especially in high doses. The toxic and mutagenic properties of PQ are attributed to the ability of the molecule to redox-cycle, which generates reactive oxygen species (ROS) and subsequent oxidative stress. ROS also cause oxidative DNA damage such as 8-oxoguanine (8OG), a mutagenic base that, when replicated, causes G to T transversion mutations. The present study employed the CHO-derived cell line AS52 to quantify the mutagenic properties of low doses of PQ. By containing a functional, chromosomally-integrated copy of the bacterial gpt gene, AS52 cells a facile system for evaluating the mutagenic properties of genotoxicants. To bolster the sensitivity of this system for detecting mutagenesis of weak mutagens like PQ, and to provide a tool for mechanistic evaluation of the mutagenic process, we constructed a new AS52-derived cell line defective for 8OG DNA repair. Specifically, we employed CRISPR-Cas9 technology to knock out 8-oxoguanine DNA glycosylase (OGG1) and MUTYH glycosylase, two key enzymes involved in the base excision repair of 8OG. The double knock-out (DKO) AS52 cells were found to be more sensitive to PQ toxicity than the parental (WT) AS52 cell line. They experienced higher levels of ROS, which translated into more DNA double-strand breaks, which explained the PQ toxicity. The increased ROS levels also led to more 8OG genomic accumulation, and a higher level of mutations in the DKO cells, suggesting that PQ mutagenesis is mediated primarily by 8OG genomic accumulation. Consistent with this view, antioxidant co-treatment lowered induced cellular ROS and PQ-induced mutagenesis. Taken together, our data demonstrate the strong protective role of OGG1 and MUTYH against PQ-induced mutagenesis. Moreover, our experiments establish the engineered OGG1-/-MUTYH-/- AS52 cell line and associated methods as a versatile cellular system for studying in quantitative terms the mutagenesis of other agents, environmental or endogenous, that induce oxidative stress.


Asunto(s)
ADN Glicosilasas/genética , Guanina/análogos & derivados , Mutágenos/toxicidad , Paraquat/toxicidad , Animales , Células CHO , Cricetulus , Roturas del ADN de Doble Cadena , Reparación del ADN , Ingeniería Genética , Genoma , Guanina/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
19.
Toxicol Rep ; 4: 165-171, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28959637

RESUMEN

Naturally occurring depsidones from the marine fungus Aspergillus unguis are known to have substantial anti-cancer activity, but their mechanism of action remains elusive. The purpose of this study was to examine the anti-aromatase activity of two common depsidones, unguinol and aspergillusidone A, in a co-culture system of human primary breast adipose fibroblasts and hormonal responsive T47D breast tumor cells. Using this in vitro model it was shown that these depsidones inhibit the growth of T47D tumor cells most likely via inhibition of aromatase (CYP19) activity. The IC50 values of these depisidones were compared with the aromatase inhibitors letrozole and exemestane. Letrozole and exemestane had IC50 values of respectively, 0.19 and 0.14 µM, while those for Unguinol and Aspergillusidone A were respectively, 9.7 and 7.3 µM. Our results indicate that among the depsidones there maybe aromatase inhibitors with possible pharmacotherapeutical relevance.

20.
Int J Mol Sci ; 18(6)2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28587170

RESUMEN

Argininosuccinate synthetase (ASS), a key enzyme to synthesize arginine is down regulated in many tumors including hepatocellular carcinoma (HCC). Similar to previous reports, we have found the decrease in ASS expression in poorly differentiated HCC. These ASS(-) tumors are auxotrophic for arginine. Pegylated arginine deiminase (ADI-PEG20), which degrades arginine, has shown activity in these tumors, but the antitumor effect is not robust and hence combination treatment is needed. Herein, we have elucidated the effectiveness of ADI-PEG20 combined with 5-Fluorouracil (5-FU) in ASS(-)HCC by targeting urea cycle and pyrimidine metabolism using four HCC cell lines as model. SNU398 and SNU387 express very low levels of ASS or ASS(-) while Huh-1, and HepG2 express high ASS similar to normal cells. Our results showed that the augmented cytotoxic effect of combination treatment only occurs in SNU398 and SNU387, and not in HepG2 and Huh-1 (ASS(+)) cells, and is partly due to reduced anti-apoptotic proteins X-linked inhibitor of apoptosis protein (XIAP), myeloid leukemia cell differentiation protein (Mcl-1) and B-cell lymphoma-2 (Bcl-2). Importantly, lack of ASS also influences essential enzymes in pyrimidine synthesis (carbamoyl-phosphate synthetase2, aspartate transcarbamylase and dihydrooratase (CAD) and thymidylate synthase (TS)) and malate dehydrogenase-1 (MDH-1) in TCA cycle. ADI-PEG20 treatment decreased these enzymes and made them more vulnerable to 5-FU. Transfection of ASS restored these enzymes and abolished the sensitivity to ADI-PEG20 and combination treatment. Overall, our data suggest that ASS influences multiple enzymes involved in 5-FU sensitivity. Combining ADI-PEG20 and 5-FU may be effective to treat ASS(-)hepatoma and warrants further clinical investigation.


Asunto(s)
Arginina/metabolismo , Argininosuccinato Sintasa/deficiencia , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Fluorouracilo/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Adulto , Anciano , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Argininosuccinato Sintasa/genética , Argininosuccinato Sintasa/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Fluorouracilo/farmacología , Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Hidrolasas/farmacología , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Modelos Biológicos , Polietilenglicoles/farmacología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...